首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6054篇
  免费   548篇
  国内免费   1篇
  2023年   47篇
  2022年   38篇
  2021年   241篇
  2020年   129篇
  2019年   126篇
  2018年   147篇
  2017年   137篇
  2016年   225篇
  2015年   338篇
  2014年   386篇
  2013年   460篇
  2012年   573篇
  2011年   604篇
  2010年   321篇
  2009年   286篇
  2008年   332篇
  2007年   348篇
  2006年   328篇
  2005年   278篇
  2004年   243篇
  2003年   243篇
  2002年   245篇
  2001年   41篇
  2000年   34篇
  1999年   56篇
  1998年   48篇
  1997年   41篇
  1996年   29篇
  1995年   32篇
  1994年   25篇
  1993年   18篇
  1992年   21篇
  1991年   15篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   12篇
  1982年   6篇
  1981年   9篇
  1980年   13篇
  1978年   5篇
  1977年   5篇
  1976年   9篇
  1974年   4篇
  1961年   5篇
  1960年   5篇
排序方式: 共有6603条查询结果,搜索用时 375 毫秒
81.
Background and AimsUnderstanding impacts of altered disturbance regimes on community structure and function is a key goal for community ecology. Functional traits link species composition to ecosystem functioning. Changes in the distribution of functional traits at community scales in response to disturbance can be driven not only by shifts in species composition, but also by shifts in intraspecific trait values. Understanding the relative importance of these two processes has important implications for predicting community responses to altered disturbance regimes.MethodsWe experimentally manipulated fire return intervals in replicated blocks of a fire-adapted, longleaf pine (Pinus palustris) ecosystem in North Carolina, USA and measured specific leaf area (SLA), leaf dry matter content (LDMC) and compositional responses along a lowland to upland gradient over a 4 year period. Plots were burned between zero and four times. Using a trait-based approach, we simulate hypothetical scenarios which allow species presence, abundance or trait values to vary over time and compare these with observed traits to understand the relative contributions of each of these three processes to observed trait patterns at the study site. We addressed the following questions. (1) How do changes in the fire regime affect community composition, structure and community-level trait responses? (2) Are these effects consistent across a gradient of fire intensity? (3) What are the relative contributions of species turnover, changes in abundance and changes in intraspecific trait values to observed changes in community-weighted mean (CWM) traits in response to altered fire regime?Key ResultsWe found strong evidence that altered fire return interval impacted understorey plant communities. The number of fires a plot experienced significantly affected the magnitude of its compositional change and shifted the ecotone boundary separating shrub-dominated lowland areas from grass-dominated upland areas, with suppression sites (0 burns) experiencing an upland shift and annual burn sites a lowland shift. We found significant effects of burn regimes on the CWM of SLA, and that observed shifts in both SLA and LDMC were driven primarily by intraspecific changes in trait values.ConclusionsIn a fire-adapted ecosystem, increased fire frequency altered community composition and structure of the ecosystem through changes in the position of the shrub line. We also found that plant traits responded directionally to increased fire frequency, with SLA decreasing in response to fire frequency across the environmental gradient. For both SLA and LDMC, nearly all of the observed changes in CWM traits were driven by intraspecific variation.  相似文献   
82.
Background and AimsGlobal plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness.MethodsWe evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort.Key ResultsWhile intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37–0.64), and almost all traits had detectable associations with plant fitness.ConclusionsIntraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.  相似文献   
83.
The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.  相似文献   
84.
The International Journal of Life Cycle Assessment - Scientific Life Cycle Assessment (LCA) literature provides some examples of LCA teaching in higher education, but not a structured overview of...  相似文献   
85.
Reviews in Fish Biology and Fisheries - Recreational fishing is practiced by?~?350 million people globally, and while it historically has been thought to have minimal ecological impact...  相似文献   
86.
87.
88.
89.
Female mammals are functional mosaics of their parental X-linked gene expression due to X chromosome inactivation (XCI). This process inactivates one copy of the X chromosome in each cell during embryogenesis and that state is maintained clonally through mitosis. In mice, the choice of which parental X chromosome remains active is determined by the X chromosome controlling element (Xce), which has been mapped to a 176-kb candidate interval. A series of functional Xce alleles has been characterized or inferred for classical inbred strains based on biased, or skewed, inactivation of the parental X chromosomes in crosses between strains. To further explore the function structure basis and location of the Xce, we measured allele-specific expression of X-linked genes in a large population of F1 females generated from Collaborative Cross (CC) strains. Using published sequence data and applying a Bayesian “Pólya urn” model of XCI skew, we report two major findings. First, inter-individual variability in XCI suggests mouse epiblasts contain on average 20–30 cells contributing to brain. Second, CC founder strain NOD/ShiLtJ has a novel and unique functional allele, Xceg, that is the weakest in the Xce allelic series. Despite phylogenetic analysis confirming that NOD/ShiLtJ carries a haplotype almost identical to the well-characterized C57BL/6J (Xceb), we observed unexpected patterns of XCI skewing in females carrying the NOD/ShiLtJ haplotype within the Xce. Copy number variation is common at the Xce locus and we conclude that the observed allelic series is a product of independent and recurring duplications shared between weak Xce alleles.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号